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Abstract 

 This research explores the application of transformer models in predicting hurricane 

genesis, trajectory, and intensity changes. A three-model system was developed to address 

different stages of a hurricane's lifecycle: (1) a hurricane genesis model to estimate the 

likelihood of formation, (2) an initial conditions model to predict post-formation characteristics, 

and (3) a trajectory model to forecast the storm's lifespan and intensity changes until dissipation 

or landfall. These models were designed to work in a seamlessly pipeline. The study leveraged 

the NOAA’s HURDAT hurricane and the NOAA’s AVHRR Pathfinder oceanic conditions 

databases as training datasets for the TabTransformer models, implemented in PyTorch. While 

the combined system yielded mixed results, individual models demonstrated mixed to high 

accuracy. Despite these promising findings, the research identified areas for improvement, 

including refined data preprocessing and addressing possible sources of error. Future work 

aims to enhance model performance, generating more accurate and reliable hurricane 

predictions. This research’s results highlight the potential for further advancements in the use of 

transformers for weather forecasting applications and contribute to the growing body of literature 

on artificial intelligence in meteorology.  

1. Introduction

Hurricanes are among the most destructive natural disasters. Hurricanes cause widespread 

devastation through powerful winds, torrential rainfall, and storm surges, leading to the 

destruction of homes, infrastructure, and critical services (Chavas et al. 2013). Their impacts 

include massive economic losses, displacement of communities, and loss of life, often 

disproportionately affecting vulnerable populations. Moreover, their behavior is being profoundly 

altered by climate change. Increasing global temperatures, rising oceans, and shifting 

atmospheric patterns have contributed to hurricanes becoming more intense, more frequent, 

and less predictable (Holland et al., 2014). These changes have expanded the temporal and 

geographical range of hurricane formation, increasing the risk to human lives, infrastructure, and 

economies. The growing variability in hurricane activity underscores the urgent need for 

innovative forecasting tools capable of addressing these climate-driven challenges. 
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Hurricane forecasting has experienced significant improvements thanks to advances in 

meteorological instrumentation, satellite technology, and computational methods. Early 

forecasting relied on rough physical models and broad mathematical formulations, while the 

advent of machine learning introduced more sophisticated methods for analyzing historical data. 

Current research has demonstrated the effectiveness of artificial intelligence with Convolutional 

Neural Networks (CNNs) handling tabular meteorological data and Recurrent Neural Networks 

(RNNs) processing satellite imagery effectively against hurricane behaviour. However, these 

methods largely rely on the presence of already-formed storms, relegating their utility from 

predicting hurricane genesis and early formation dynamics.  

Transformers, first introduced in the "Attention 

Is All You Need" paper (Vaswani et al., 2023), 

have revolutionized deep learning by leveraging 

attention mechanisms to capture long-range 

dependencies in data. Initially designed for 

natural language processing, transformers have 

proven remarkably versatile, expanding into other 

domains such as time-series analysis and tabular 

data. Unlike CNNs and RNNs, transformers 

process entire sequences simultaneously. This 

parallelization enables much faster training times 

and the ability to handle much longer sequences 

than RNNs. The self-attention mechanism in 

transformers also enables the model to consider 

the entire data sequence simultaneously, 

eliminating the need for recurrence or hidden 

vectors. Instead, positional encoding maintains 

information about the position of each element in 

the sequence using new attention heads. 

Accurate hurricane forecasting is of paramount importance, offering critical insights for 

disaster preparedness and policy-making. Early and precise predictions can inform evacuation 

plans, resource allocation, and infrastructure fortification, potentially saving lives and mitigating 

economic losses. Precise forecasting can enable policymaker to make informed seasonal 

decisions on disaster preparedness, resource allocation and infrastructure investment to 

mitigate potential impact. By leveraging transformers' capabilities in order to predict hurricane 

genesis, formation, and intensity directly from historical meteorological data, this project aims to 

bridge existing gaps in forecasting and provide a more robust tool for proactive disaster 

management. 

This research outlines the development of a transformer-based model to analyze historical 

meteorological data and forecast hurricanes with increased accuracy as well as including 

genesis and early formation dynamics, offering a transformative approach to preparing for these 

increasingly unpredictable storms. 

 

  

Figure 1: General transformer architecture 
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2. Research Question 

This research hopes to answer the following question: 

Can modern machine learning architecture, transformers, accurately predict real-time 

and future hurricane formation, trajectory and intensity using historical meteorological and 

hurricane data? 

To address the research question, error rates will be evaluated against the current NHC NOAA 

hurricane error measurements for intensity and trajectory, as these are the metrics they monitor 

(“National Hurricane Center Forecast Verification,” n.d.). For this reason, the formation and birth 

models will not be included in determining the outcome of the research question. 

 

2.1. Hypothesis 

Null Hypothesis (H0): Transformers do not perform better than existing forecasting methods for 
predicting hurricanes, determined relative to the NOAA’s error trends. 

Alternative Hypothesis (HA): Transformers perform better than existing forecasting methods for 

predicting hurricanes, determined relative to the NOAA’s error trends. 

 

I hypothesize that the model will exhibit higher error margins compared to the current NHC 

NOAA error measurements, as their approach integrates multiple methodologies and accounts 

for a broader range of variables than the experimental models. 

Outside the scope of the research question, I predict that the trajectory model will be more 

accurate than Alemany et al.'s, as transformers represent an advancement over the CNN 

framework utilized in their study and the input data used in both is largely the same (Alemany et 

al., 2019). 

 

3. Literature Review 

I. Introduction 

Hurricanes are intense storms characterized by powerful wind sheers, heavy rainfall and 

widespread flooding often resulting in major damage in coastal communities, devastating homes 

and businesses. Residents are forced to evacuate and those unable to do so put their lives in 

jeopardy. The impact of hurricanes can be lasting, leading to economic downturns, 

environmental disasters, long-term health consequences and increased marginalization of 

minority groups. Early detection systems are crucial to identifying the affected localities, 

determining the appropriate emergency response and issuing warning and alerts. 

The modelling of hurricane formation and projection of their trajectories has been 

thoroughly researched for decades but it is a complex and challenging task due to the number 

of interrelated factors, the erratic and chaotic nature of weather forecasting and limited 
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observational data at the site of their births. Nonetheless, efforts dating back to the 1950s have 

been made to utilize mathematical and computational techniques to predict hurricanes (Dorst, 

2007). 

Today’s modern approaches employ artificial intelligence systems, ranging from hybrid AI-

assisted mathematical models to multilayered machine learning neural networks. With 

hurricanes trending to become more frequent and more devastating as a result of climate 

change, the need for a high accuracy prediction model is paramount for policymakers, 

emergency and relief services as well as residents. 

This research will cover the current state of hurricane forecasting performed with artificial 

intelligence and the predictive accuracy of existing models. 

 

a. Current Research - Damage and Economic Estimation 

 

Much of the research performed with artificial intelligence related to hurricanes is done on 

assessing the storm’s aftermath and economic damage rather than predicting its pre-landfall 

behaviour. This task has received much attention due to the extensive human labour required, 

the lengthiness of the assessment process and misidentification of disaster damage. Artificial 

intelligence for hurricane damage estimation has been used in two prevailing methods: 1) 

convolutional neural networks examining satellite imagery of impacted regions (Calton et al., 

2021) and 2) data mining of damage statistics to reveal variable relationships through AI models 

such as Decision Trees, Naïve Bayes and Neural Network Clustering (Nawari, 2012). 

While this is only adjacent to research performed on predicting hurricane behaviour, it 

provides important context as to where efforts are currently allocated and what presence AI has 

in the study of hurricanes. 

 

b. Neural Networks 

 

Moving more specifically into hurricane forecasting using AI, neural networks have been the 

prevailing machine learning model due to the multidimensionality of the learning data and their 

increased pattern and relation perception at deeper layers. More precisely researchers have 

landed on deep neural networks, which contain multilayered artificial neural networks between 

the input and output layers, allowing it to capture higher levels of patterns. 
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The following is a brief explanation of neural networks necessary to understand the specific 

techniques used in hurricane forecasting.  

 

A simple, single-layered artificial neural 

network is represented in the above. Weights 

are the connections between nodes and carry 

a value. Biases are values assigned to all non-

input layer nodes that attempt to capture 

unforeseen factors. Each neuron, a node within 

the hidden layers, has an activation function 

dependent on the input value, weights and 

bias. The inputs will either fail to meet 

activation requirements or achieve them and 

continue down onto a further layer with a new 

assigned value calculated based on the chosen 

activation function. The process is repeated 

until assigning values to the output nodes. 

Once the training process is completed and weights and biases have been assigned, the model 

is prepared to become predictive.  

Three common classifications of deep neural networks that see the most use today: 

1) Convolutional Neural Networks (CNN) 

2) Recurrent Neural Networks (RNN) 

3) Transformers 

 

The first two have already seen use in hurricane forecasting. 

 

c. Convolutional Neural Networks 

 

Convolutional Neural Networks are a 

class of deep neural networks, typically 

utilized in computer vision. The AI system 

automatically extracts features from images 

for specific tasks such as image classification 

and face authentication. Different layers do 

so by executing convolution operations, 

each performing nonlinear activation 

functions on narrower image subsets 

determined by the outputs of previous layers. Between convolution layers, there are pooling 

layers that map features into smaller regions. CNNs are feedforward neural networks, meaning 

Input Nodes Hidden Layer(s) Output Nodes 

Figure 2: Simple artificial neural network with single 
hidden layer 

 

Figure 3: Convolution Neural Network architecture 
with convolution and pooling layers  
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information only moves forward through hidden nodes. Their performance has steadily improved 

with certain models such as ResNet surpassing the 5% error rate of human vision (Yin et al., 

2017).  

CNNs coupled with satellite imagery have been used in identifying hurricane trajectories, 

particularly of their post-landfall movement through the remaining path of damage and to 

determine the storm’s intensity (Guo, 2021). 

The issue with using CNNs to explain hurricane characteristics is their reliance on satellite 

imagery. Imaging storms only provides data on storms that have formed to a significant enough 

extent to be identifiable from orbit. This could omit crucial information provided from smaller 

tropical storms while they either transition into hurricanes or die out. While they have a powerful 

capacity to map out trajectories from past storms, which can be used predictively in models. 

CNN in this capacity also require a standardization of satellite imagery along a specific pitch and 

geolocation for pattern to be accurately recognized. Most essentially, however, in relevance to 

the research question posed, CNNs are impractical in predicting hurricane births as the 

meteorological precursors are not visible. 

 

d. Recurrent Neural Networks 

 

Recurrent Neural Networks are nonlinear dynamic deep neural networks used to represent 

complex sequential relationships between variables, like in spatiotemporal processes. Due to 

their flexibility with such data and other data with temporal dependencies, RNNs have been 

tasked with natural language processing including language modelling, sentiment analysis and 

music generation. RNNs are fully connected and feed results back into the network, dissimilar to 

CNNs. The input of RNNs consist of the current input as well as that of previous samples, 

meaning the connections between nodes form a directed graph along a temporal sequence. 

Furthermore, neurons store internal memories of the computation history from previous 

samples. Different RNN models have been constructed to specify neuron memory length and 

directionality of dependencies according to their task (Yin et al., 2017).  

 RNN models have been used with the 

specific database intended to be employed by 

this research and the 6-hour incremental 

hurricane data provided sequential temporal 

data. This made parameters relative rather than 

absolute. To analyze hurricane behaviour, RNNs 

are trained on a grid model, distinguished by 

geographic coordinates, to track hurricane 

trajectories. Researchers have also selected 

specific hyperparameters for hurricane predicting 

RNNs, choosing the number of hidden layers and 

employing particular nodes (Alemany et al., 

2019).  

Figure 4: Simple Recurrent Neural Network architecture 
with hidden layers 
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Research done on RNN models in conjunction with hurricane prediction is much more 

extensive than with CNNs and is the consensus model for predicting hurricane movement. Work 

previously done confirms the feasibility of this research with the NOAA HURDAT database and 

provides a solid basis for predicting hurricane births. It also demonstrates to what extent such 

models are capable of being accurate and that errors arise in how the data is parsed and 

passed into the model. Crucially however, RNN’s suffer from scalability issues and the vanishing 

gradient problem, which describes a model’s inability to properly capture long-range 

dependencies due to exponentially decreasing changes in weight during backpropagation 

(Hochreiter, 1998). These shortcomings can make RNN’s unable to fully grasp relationships 

between variables.  

 

e. Transformers 

 Transformers, introduced in the seminal paper "Attention is All You Need" by Vaswani et 

al., revolutionized machine learning by addressing limitations of earlier models like 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Unlike CNNs, 

which are primarily designed for spatial data like images, and RNNs, which can handle 

sequential data processing but suffers from the vanishing gradient problem and poor scalability, 

transformers rely entirely on the attention mechanism to model relationships between input data 

elements.  

 At the core of the transformer architecture is the self-attention mechanism, which enables 

the model to weigh the importance of each element in the input sequence when training. This 

mechanism is implemented in layers that contain multi-head attention neural networks. Multi-

head attention allows the model to focus on different aspects of the input data simultaneously, 

capturing relationships and dependencies that other frameworks might struggle to represent, 

especially for long-range dependencies in sequential data, like time series (Zimerman and Wolf, 

2023). The parallelization of transformer processing, handling entire input sequences at once, 

also makes them significantly faster to train, making the amount of data they can handle 

indirectly greater. 

 Transformers are now widely used across domains, including natural language 

processing, computer vision, and even weather forecasting. Hittawe et al. developed a 

transformer model to predict Red Sea conditions from historical data that outperformed existing 

models with an R2 surpassing 99 (Hittawe et al., 2024), Nguyen showed their efficacy and 

reliability in medium-range weather forecasting, outperforming current methods beyond 7 days 

(Nguyen et al., 2024), and researchers like Arifin et al. (Arifin et al., 2024) and Hasan (Hasan, 

2024) have used transformer models in meteorological forecasting relevant to agriculture and 

climate science.  
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f. TabTransformer 

 An existing transformer architecture that could train off historical NOAA data is the 

TabTransformer. The TabTransformer in PyTorch, implemented by “lucidrain” (Huang et al., 

2020), is a transformer-based model tailored for tabular data. This architecture consists of a 

column embedding layer, multiple transformer layers, and a final multi-layer perceptron (MLP). It 

handles both categorical and continuous features efficiently. TabTransformer models can have 

their parameters specified like the number of continuous or categorical features, binary or 

continuous outputs, model dimensions and other hyperparameters such as the number of 

transformer layers, attention heads and the learning and dropout rate. Huang et al.’s paper 

recommends a variety of parameter settings for general use. 

 

II. Conclusion 

Upon conducting research on the current state of AI-enabled hurricane prediction models, 

many aspects of my research question were answered while others were unresolved. It was 

found that AI has been used to predict weather patterns and hurricane trajectories, whereas 

other characteristics such as anticipating intensity changes and forecasting hurricane births was 

touched upon less in published work.  

Research also showed that the preferred AI model used by experimenters was a deep 

neural network model for its efficiency in handling complex multidimensional problems with 

chaotic underlying relationships, specifically recurrent neural networks that specialize in 

sequential temporal data. Many modern projects utilize the NOAA’s HURDAT database for their 

hurricane data and plot hurricane movement along an oceanic geolocation coordinate grid. 

However, none were found to integrate with historical sea surface temperature data, like that 

from the NOAA’s AVHRR Pathfinder. This may provide a new avenue for hurricane analysis 

particularly on what constitutes a hurricane to be born. Published papers also showed that the 

computational power to train such models is reasonable for any researchers and that shallow 

depths of learning can be sufficient. 

As transformers have already shown their effectiveness in weather forecasting tasks, and 

previous neural networks have proven successful in hurricane prediction, a logical next step is 

to test transformers, such as the TabTransformer’s, performance in hurricane forecasting. It also 

provides an opportunity to conduct experimentation on predicting hurricane births as well as 

their trajectory and intensity changes. 

 

4. Research Design & Methodology  

This project aims to implement a three-model transformer-based system to improve 

hurricane forecasting capabilities, focusing on predicting hurricane genesis, estimating initial 

conditions, and forecasting trajectories. Before explaining the methodologies for these models, it 

is essential to outline the approach to parsing and cleaning the training data. 



Patrick Milks SCI400 – Final Paper 100134354 

7 
 

The first data source will be the NOAA’s HURDAT database, which contains records of all 

observed hurricanes from the late 1880s to 2023. This dataset was used in other forecasting 

research like Alemany et al.’s. This data will be parsed into Hurricane class objects, each 

containing detailed attributes of the storm's lifecycle. Among these attributes will be held all 

recorded entries of the hurricane, stored as Entry class objects. Each entry will provide key 

details at six-hour intervals unless the storm exhibits noteworthy behavior, tracking of its 

behaviour. Complementary sea surface and meteorological data will be obtained from NOAA’s 

AVHRR Pathfinder database, which offers daily daytime and nighttime measurements from 

1981 through 2023. To align this data with hurricane activity, a custom web-scraping script will 

extract relevant files corresponding to active hurricane days, defined as the earliest and latest 

yearly entries recorded in the HURDAT database, found to be between the 2nd of June and the 

25th of December. This approach ensures that only pertinent ocean and weather conditions are 

analyzed. 

A series of preprocessing functions will be performed on the meteorological data, including 

linearly interpolating missing temperature values, specifying longitude-latitude grid intervals, and 

filtering out non-oceanic data. These steps aim to reduce computational load while preserving 

the quality and relevance of the data. Any hurricane or meteorological records with incomplete 

information will be excluded to maintain dataset integrity. The data will also be filtered to include 

only hurricane-active determined regions of the ocean, focusing resources on areas where 

hurricanes are most likely to form and habituate, found to be within the latitude and longitudes of 

7N-70N and 137W-14E. 

The cleaned and preprocessed data will be partitioned to train each model effectively. For 

the hurricane genesis model, a grid will be created for each day, with latitude and longitude 

points marked as 1s for locations with hurricane birth and 0s elsewhere. These binary values 

will serve as the model's output. For the initial conditions model, the first recorded entry of each 

hurricane will be extracted to define the "birth conditions," which will be supplement with 

complementary sea surface and weather conditions at the time and location of their genesis. 

Lastly, for the trajectory forecasting model, all consecutive hurricane entries will be used to 

predict the storm's next step also tied with sea conditions at both entry locations. Models with 

binary outputs versus continuous outputs and multivariate versus single-variable inputs will 

require tailored transformer parameters, such as loss functions, embedding sizes, and attention 

head configurations, to optimize performance for their specific prediction tasks.  

All three models will be built using lucidrains’ PyTorch Tabular Transformer (Huang et al., 

2020), which processes multivariate tabular data with temporal and spatial dependencies. A 

65%-35% training-to-testing data split will be employed, adhering to standard practices 

(Pawluszek-Filipiak and Borkowski, 2020). Each model will include error validation during every 

training epoch to ensure robust performance. The three models will work in tandem to create a 

continuous timeline of potential and existing storms using available data. For parameter such as 

embedding dimension, depth, number of heads, attention dropout and feed forward dropout 

rate, Huang et al.’s recommended settings are used.
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The hurricane genesis model will be evaluated according to the binary cross-entropy loss 

function, measuring the difference between predicted probabilities and actual labels. 

Specifically, it calculates the negative log likelihood of the true labels given the predicted 

probabilities, incrementally penalizing predictions the farther they are from actual values. Its 

formula is the following: 

𝐿 =  −
1

𝑁
∑ 𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)

𝑁

𝑖=1
 

Equation 1: Binary cross-entropy loss function 

where: 

- 𝑁 is the number of data points, 

- 𝑦𝑖 is the actual binary label, 

- 𝑝𝑖 is the predicted probability of a 1 (i.e. hurricane birth) 

-  

The two regression models, the initial conditions and trajectory forecasting models, 

alternatively use the mean squared loss function. It measures the average squared difference 

between the predicted values and actual values. The squared differences ensure that larger 

errors are penalized more heavily, encouraging the model to focus on minimizing larger 

deviations. The formula for MSE is: 

𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑝)2

𝑁

𝑖=1
 

Equation 2: Mean squared loss function 

 

where: 

- 𝑁 is the number of data points, 

- 𝑦𝑖 is the actual value, 

- 𝑦𝑝 is the predicted value 

 

A standard scaler from sci-kit was used to standardize the inputs of all models and for the 

outputs of models that were multivariate and continuous like those of the trajectory and initial 

conditions models. When a scaler was involved, it had to also be used to “unscale” the outputs 

of individual predictions. 

 

 

Link to entire model repositories: https://github.com/pmilks/SCI400-Project-Milks 

 

  

https://github.com/pmilks/SCI400-Project-Milks


Patrick Milks SCI400 – Final Paper 100134354 

9 
 

5. Results 

The performance of the models was mixed. For the trajectory model, tracking a hurricane’s 

movements and change in characteristics over a single 6-hour interval, the transformer’s loss 

model showed a logarithmic improvement over training epochs with a scaled mean squared 

error loss tending towards ~0.04.  

 

Figure 5: Trajectory Transformer's loss validation 

 The initial conditions model also exhibited a positive logarithmic learning curve through 

its mean squared error loss data but tended towards a much higher ~0.92 over 20 epochs. As 

this data is also standardized, a loss of 0.92 is highly significant. 

 

Figure 6: Initial Conditions Transformer's loss validation 
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  As for the third and final, birth model, that used a binary cross-entropy function, its loss 

data performed differently than the previous two. The loss tended towards between a lower 0.04 

and 0.05 but did not exhibit the same logarithmic learning curve. Additional epochs also did not 

necessarily tend to a more accurate model with occasional increases in loss over generations.  

 

Figure 7: Hurricane Genesis loss validation 

 When the following three models were tested wholly to determine whether a predicted 

hurricane could mimic the birth, initial conditions and lifecycle of its corresponding actual 

hurricane, meaningful variance was observed. Hurricane Nicole in 2022 was chosen as an 

arbitrary comparison due to its recency, meaning it had complete data, and its singular landfall. 

 The first step was to 

determine the likelihood of 

Nicole’s formation on November 

6th, 2022, given that date 

oceanic data. A probability 

heatmap on the day claimed 

Nicole’s formation was unlikely 

relative to other oceanic 

locations on the day and the 

averaged probability of Nicole’s 

genesis was ~0.4%. The 

November 6th, 2022, hurricane 

genesis probability heatmap 

demonstrates zones of higher 

probability in the warmer waters 

near shores, within the Gulf of 

Mexico and sparsely through out 

the Atlantic Ocean. There are 

aberrant data points with values 

Figure 8: Atlantic heatmap of hurricane genesis probability estimated by the 
initial conditions model 
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far exceeding the day’s norm and others with values differing dramatically from its neighbouring 

locations. Another concern is that model seems to uniformly overestimate the probability of 

hurricane formation with this day’s heatmap alone predicting multiple hurricanes.  

 

Secondly, using Hurricane Nicole’s real genesis location’s oceanic data, the initial 

conditions model predicted its birth characteristics.  

The average initial conditions of a predicted Hurricane Nicole, according to its genesis 

location’s oceanic data, was roughly accurate when determining the maximum wind speed and 

minimum pressure but drastically underestimated the hurricane force winds radius (HFWR). 

Notably, the predicted value for the HFWR was below the minimum HURDAT measurement, 

meaning the predicted Nicole would avoid hurricane classification altogether.  

With Nicole’s first initial predicted conditions, a continuous looping of the trajectory 

model was used to predict Nicole’s lifespan until first landfall, a location with no oceanic data, or 

on her dissipation. A hurricane was considered dead when two of the maximum sustained 

winds, minimum pressure and HFWR were below HURDAT hurricanes corresponding average 

final reading. For maximum sustained wind speed this was 31.32mph, while minimum pressure 

and hurricane force winds radius were 1002.82mbar and 67.89nm respectively. Starting with the 

initial predicted conditions, each new predicted change in trajectory and intensity was used as 

the input for the following prediction.  

 

 Max. Sustained Winds (mph) Min. Pressure (mbar) Hurricane Force Winds Radius (nm) 

Actual 30 1005 100 
Predicted 29.37 1008.61 67.8 
Difference -0.63 3.61 -32.2 

Table 1: Differences in predicted and actual conditions of Hurricane Nicole using the initial conditions model 

Figure 9: Sample of three predicted paths of Hurricane Nicole estimated with consecutive use of 
the trajectory model with their intensity indicated with color boldness 
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The trajectory model had difficulty predicting paths similar to that of the actual Hurricane 

Nicole. Over numerous tests, predicted Nicoles roughly matched actual Nicole in her initial 

movements, but would eventually break off. While individual tests varied drastically with many 

dissipating within the first few steps and others refusing to do so after consecutive entries where 

they lay motionless at sea, no predict Hurricane Nicole made landfall. Predicted Hurricane 

Nicoles also failed to experience significant increases or decreases in their intensity 

measurements, stalling and staying near their initial conditions.  

 

 

Table 2: Entries of a sampled predicted Nicole's lifespan of 7 steps using the trajectory model 

 

From a sample of three path of predicted Hurricane Nicoles, the absolute error in 

latitude-longitude degrees steadily increases as more entries are generated, indicating a 

possible compounding effect of initial errors or a broader error in the data processing or training 

method. 

 

Figure 11: Absolute error of predicted Hurricane Nicole paths measured in 
absolute degrees 

Figure 10: NHC Official Historical Tracking Error Trends over 
different forecast ranges, measured in miles 
(“National Hurricane Center Forecast 

Verification.”, n.d.) 
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When comparing the absolute tracking errors of the predicted Nicoles and the NHC’s 

Official tracking error trends, the average tracking errors from the trajectory model at 24 hours 

and 48 hours surpass the NHC’s current tracking errors even if the longitudinal-latitudinal 

absolute degrees of separation are converted to their minimum mile value, calculated as the 

longitudinal difference at the highest expected latitude, 70N. If the deviation is measured at this 

minimum scenario, 1 degree is roughly equal to 23.65 miles. 

Formula for longitudinal degrees-to-miles conversion, relative to latitude: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = cos(𝐿𝑎𝑡𝑟𝑎𝑑𝑠) ∙  
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐸𝑎𝑟𝑡ℎ

360
 

Equation 3: Longitudinal degree to mile conversion according to latitude 

 

At 24 hours, or step 4, the predicted storms tended towards ~3 degrees of error, equating to 

a minimum deviation of ~70.95 miles, above the NHC’s 24-hour ~40 mile tracking error. The 

same is the case at 48 hours, or step 8, with the trajectory model’s and NHC’s tracking errors 

being 165.55 miles and ~50 miles respectively. As the tracking errors of predicted Hurricane 

Nicoles grow continuously at a higher rate than the NHC’s tracking errors, the trajectory model 

trends to continue being less accurate than the NHC’s tracking errors as forecasting period 

increases.  

 

6. Conclusion 

The implementation of the three hurricane prediction models, hurricane genesis, initial 

conditions, and trajectory, revealed both strengths and significant limitations. While the models 

were designed to work consecutively, the outcomes indicate that integrating their predictions 

into a single pipeline was not successful in achieving accurate, reliable outputs. 

Individually, the hurricane genesis 

model showed notable promise in 

identifying regions with higher or lower 

likelihoods of hurricane formation. This 

capability demonstrates that the model 

successfully learned broad patterns 

from the training data, suggesting a 

degree of robustness in identifying key 

meteorological indicators. However, 

the presence of aberrant data points, 

deviating heavily from neighboring 

predictions or reporting doubtfully high 

probabilities, highlighted 

inconsistencies. A probable 

explanation for these anomalies could 

lie in the interpolated temperature data 

used to fill “dead zones” of the AVHRR 

Pathfinder satellite. Such dead zones, 

Figure 12: AVVHRR Pathfinder SST data for December 30th, 2022, with broad 
regions of missing data 
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caused by intermittent satellite visibility, can create discontinuities confusing the model and 

producing erroneous predictions. Moreover, the model exhibited a consistent overestimation of 

hurricane genesis probabilities. This bias may stem from the inherent structure and distribution 

of the training data. The training process involved iterating over the entire oceanic region daily 

and associating hurricane births with grid cells limited by 1-degree intervals. By assigning 

hurricane genesis conditions to an entire grid cell spanning hundreds of square miles, the model 

may have spread the range of favorable conditions. This oversimplification could result in the 

model assigning higher probabilities to regions that do not meet the necessary conditions for 

hurricane formation.  

To address this limitation, further experimentation with finer spatial resolutions is necessary. 

Reducing the grid intervals to fractions of a degree could improve the data, allowing the model 

to learn more local relationships and reduce overestimation errors. Such adjustments would 

require more computational resources but could yield improvements in predictive accuracy. 

Another notable finding was the model's tendency to favor regions adjacent to shorelines 

for hurricane genesis. While hurricanes occasionally form close to coastal areas, they typically 

develop in deeper ocean waters where favorable conditions are more likely to persist. 

Incorporating oceanic depth data could help the model better understand the oceanographic 

constraints of hurricane formation. Despite these limitations, the hurricane genesis model still 

holds potential as a tool for identifying regions of interest where hurricane formation is more 

likely. By flagging such regions, the model could serve as an early-warning system, prompting 

further analysis using established models or observational data to confirm or refine predictions. 

The performance of the initial conditions model reveals several areas that require 

adjustments and refinement to improve its predictive accuracy. At present, it is challenging to 

determine the model's success. A critical issue lies in the use of the mean squared error (MSE) 

loss function to evaluate the model. For the initial conditions model, the inputs and outputs were 

scaled to account for magnitude differences among variables. However, the scaling method 

used may not have been optimal for this application. A min-max feature scaler would have been 

more appropriate, as it rescales the data and preserves the relationships between minimum and 

maximum values. In the context of predicting hurricane’s first conditions, this is essential for 

capturing the lower threshold values of determinants, critical for a system to be classified as a 

storm. By ensuring that minimum values are represented proportionally, a min-max scaler could 

improve the model’s ability to identify early-stage hurricanes. 

Another significant challenge stems from the training dataset, which was the same as that 

used for the hurricane genesis model. As previously discussed, this dataset likely introduced 

biases due to the imbalance between hurricane birth and non-birth conditions. This imbalance 

may have skewed the model's understanding of the conditions necessary for hurricane 

formation, leading to inaccuracies. Additionally, the inclusion of the hurricane-force wind radius 

(HFWR) parameter likely posed an issue. It has only recently been incorporated into the 

HURDAT database and, consequently, HFWR values are absent in older hurricane data. 

However, even for modern hurricanes, during a hurricane’s transitional stage between tropical 

storm and hurricane, either early or late in its life, there are no hurricane force winds, meaning 

the entries were omitted in an effort to have complete datasets. The inclusion of early transition 

stage entries would be crucial in best training a dataset focused on determining what a 

hurricane’s first conditions might be. The omission these transitional storms may have reduced 



Patrick Milks SCI400 – Final Paper 100134354 

15 
 

the model's ability to accurately capture relationships between early-stage hurricanes and their 

determinants.  

The predicted initial conditions during individual tests highlighted this issue. While the 

model predicted maximum wind speed and minimum pressure moderately well, its performance 

on HFWR was significantly poorer. This discrepancy suggests that the HFWR parameter 

introduced noise into the training process. Removing this variable altogether may allow the 

model to focus on better-defined features, improving prediction accuracy. Ideally this would be 

reflected by shift the model’s loss validation’s curve downwards, maintaining the logarithmic 

improvement indicating growth while lowering the floor towards scaled zero. In light of this 

analysis, a retraining of the model without the HFWR variable using a more reflective dataset 

and min-max scaler is recommended to assess its performance and applicability.  

The performance of the trajectory model initially seemed the most promising. The mean 

squared error (MSE) loss graph indicated effective learning, with an exponential decrease in 

error tending toward a stable and minute minimum. The model, according to this metric, even 

demonstrated superior accuracy in single-step predictions when compared to the grid-based 

RNN trajectory tracking model developed by Alemany et al. 

 Mean Squared Loss 

Grid-Based RNN (Alemany et al.) 0.07447 
Transformer Trajectory Model (Milks) 0.04589 

However, significant limitations became evident when the trajectory model was employed 

consecutively to predict a hurricane's entire lifespan. While initial predictions showed high 

accuracy, errors accumulated steadily with each consecutive step, resulting in an absolute 

tracking error consistently exceeding current National Hurricane Center (NHC) error margins. 

Another critical limitation was the model's inability to simulate hurricane intensity changes 

effectively. Weak storms frequently dissipated early, rarely achieving growth into stronger 

hurricanes or stagnated for steps far beyond the average hurricane’s lifespan, exhibiting no 

significant movements or change in intensity. Furthermore, storms predicted by the model never 

made landfall. A plausible explanation for this issue lies in the training data. The model was 

trained exclusively on oceanic data, as landfall entries lack the sea surface data necessary for 

feature association. Consequently, a hurricane’s first landfall was designated as their final 

entries, neglecting scenarios where storms re-emerge over open waters or made multiple 

landfalls across different landmasses. This omission likely created a bias where the model 

indirectly prioritized hurricane persistence over water, failing to recognize or predict landfall 

events. To address these limitations, a reworking of the methodology would be necessary to 

incorporate landfall data.  

The inclusion of the hurricane-force wind radius (HFWR) parameter, for the same reasons 

as discussed in the initial conditions model, may also have contributed to inaccuracies in the 

trajectory model. Removing this variable from the training process could eliminate 

nonrepresentative dependencies and correct relationships between other variables and 

changes in hurricanes. A further likely source of error was in the designation of storm death, 

Table 3: Compared between mean squared loss between Alemany et al.'s 
Grid-Based RNN and this research's Trajectory Transformer model 
both predicting hurricane trajectory 
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which occurred when two of maximum wind speed, minimum pressure, and HFWR fell below 

their threshold of predefined minimum hurricane values. This approach contradicts the NHC 

standard of relying predominantly on maximum sustained wind speed for hurricane 

classification. Adjustments to these thresholds and a more nuanced definition of storm 

termination would require both more testing and input from meteorological expertise but could 

address the issue of pre-emptive storm dissipation and stagnation. Furthermore, separate 

evaluations of the model's performance near land, over open oceans, and across varying storm 

strengths would be essential to assess its accuracy comprehensively. Incorporating atmospheric 

pressure data into the models input data would likely lead to improvements in their predictive 

accuracy, as pressure is a key indicator of hurricane formation, intensification, and dissipation. 

Its inclusion could address relational gaps that are present in the models and provide context to 

improve others. At the time of the making of this research no such historical global atmospheric 

pressure database exists.  

In conclusion, due to errors revealed during repeated use of the trajectory model exceeding 

current NOAA margins, this research fails to reject the null hypothesis. 

While the results of these models are mixed, their development, alongside other research 

in meteorology leveraging transformers, demonstrates that transformer-based architectures hold 

considerable promise in predicting complex meteorological events, including natural disasters 

like hurricanes. Transformers excel at capturing temporal and spatial relationships within vast 

datasets, a critical advantage for forecasting highly dynamic and chaotic systems such as 

hurricanes. As climate change accelerates, reshaping the meteorological landscape faster than 

humans can adapt, the demand for cutting-edge neural network approaches grows ever more 

urgent. These models, particularly transformers, offer the flexibility and computational power to 

analyze evolving patterns that may otherwise escape conventional statistical techniques. Their 

use in natural disaster prediction, especially in the case of hurricanes, could help keep more 

people safe. 
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